モノづくり産業では人手による作業が数多く残っています。 図面の読解や、製造原価の見積もりなど、人の判断を必要とする業務は自動化が難しい作業でした。 しかし、キャディには受発注や製造工程のプロセスの中で生まれたデータがたくさんあります。 数多くの図面データや見積もりデータなど、一連の業務プロセスに紐づくデータであり、これらに対して何らかのパターン化を試みることが、モノづくり産業のプロセス全体の改善につながるとキャディは信じています。
また、他にもまだ活用されきっていないデータがモノづくり産業にはたくさんあるはずです。 様々なデータをデータサイエンスで活用しやすい状態にしていくことから、きっとモノづくり産業そのものの改革がはじまるはずです。
キャディが現在トライしているのは製造業でも「多品種少量生産の調達」という領域です。 これまで殆どイノベーションが起こっていない領域だからこそ、前例がない・解法が定まっていない問題が多くあり、それをアルゴリズムで解決するのは前人未踏の領域だからこそ面白味があります。
また、現時点で溜まっているデータの活用だけでなく、どんなデータがあればどんなイノベーションが起こせるか、という発想で臨みたいキャディは考えています。 あなたのスキルでデータの積み重ねから起こる変革にチャレンジしてみませんか。